Marissa DuBois in Slow Motion Full Fashion Week 2023, Fashion Channel Vlog,

Sunday, June 26, 2011

History Lyme disease

Evolutionary history of Borrelia burgdorferi genetics has been the subject of recent studies. One study has found that prior to the reforestation that accompanied post colonial farm abandonment in New England and the wholesale migration into the mid-west that occurred during the early 19th century, Lyme disease was present for thousands of years in America and had spread along with its tick hosts from the Northeast to the Midwest. 

This is confirmed by the writings of Peter Kalm, a Swedish botanist who was sent to America by Linnaeus, and who found the forests of New York "abound" with ticks when he visited in 1749. When Kalm's journey was retraced 100 years later, the forests were gone and the Lyme bacterium had probably become isolated to a few pockets along the northeast coast, Wisconsin, and Minnesota. Perhaps the first detailed description of what is now known as Lyme disease appeared in the writings of Reverend Dr John Walker after a visit to the Island of Jura (Deer Island) off the west coast of Scotland in 1764. He gives a good description both of the symptoms of Lyme disease (with "exquisite pain (in) the interior parts of the limbs") and of the tick vector itself, which he describes as a "worm" with a body which is "of a reddish colour and of a compressed shape with a row of feet on each side" that "penetrates the skin". Many people from this area of Great Britain immigrated to North America between 1717 and the end of the 18th century. The examination of preserved museum specimens has found Borrelia DNA in an infected Ixodes ricinus tick from Germany that dates back to 1884, and from an infected mouse from Cape Cod that died in 1894.

The early European studies of what is now known as Lyme disease described its skin manifestations. The first study dates to 1883 in Wrocław, Poland (then known as Breslau, Free State of Prussia), where physician Alfred Buchwald described a man who had suffered for 16 years with a degenerative skin disorder now known as acrodermatitis chronica atrophicans. At a 1909 research conference, Swedish dermatologist Arvid Afzelius presented a study about an expanding, ring-like lesion he had observed in an older woman following the bite of a sheep tick. He named the lesion erythema migrans. The skin condition now known as borrelial lymphocytoma was first described in 1911.
Neurological problems following tick bites were recognized starting in the 1920s. French physicians Garin and Bujadoux described a farmer with a painful sensory radiculitis accompanied by mild meningitis following a tick bite. A large, ring-shaped rash was also noted, although the doctors did not relate it to the meningoradiculitis. In 1930, the Swedish dermatologist Sven Hellerström was the first to propose EM and neurological symptoms following a tick bite were related. In the 1940s, German neurologist Alfred Bannwarth described several cases of chronic lymphocytic meningitis and polyradiculoneuritis, some of which were accompanied by erythematous skin lesions.

Carl Lennhoff, who worked at the Karolinska Institute in Sweden, believed many skin conditions were caused by spirochetes. In 1948, he used a special stain to microscopically observe what he believed were spirochetes in various types of skin lesions, including EM. Although his conclusions were later shown to be erroneous, interest in the study of spirochetes was sparked. In 1949, Nils Thyresson, who also worked at the Karolinska Institute, was the first to treat ACA with penicillin. In the 1950s, the relationship among tick bite, lymphocytoma, EM and Bannwarth's syndrome was recognized throughout Europe leading to the widespread use of penicillin for treatment in Europe.

In 1970, a dermatologist in Wisconsin named Rudolph Scrimenti recognized an EM lesion in a patient after recalling a paper by Hellerström that had been reprinted in an American science journal in 1950. This was the first documented case of EM in the United States. Based on the European literature, he treated the patient with penicillin.
The full syndrome now known as Lyme disease was not recognized until a cluster of cases originally thought to be juvenile rheumatoid arthritis was identified in three towns in southeastern Connecticut in 1975, including the towns Lyme and Old Lyme, which gave the disease its popular name. This was investigated by physicians David Snydman and Allen Steere of the Epidemic Intelligence Service, and by others from Yale University. The recognition that the patients in the United States had EM led to the recognition that "Lyme arthritis" was one manifestation of the same tick-borne condition known in Europe.
Before 1976, elements of B. burgdorferi sensu lato infection were called or known as tick-borne meningopolyneuritis, Garin-Bujadoux syndrome, Bannwarth syndrome, Afzelius' disease, Montauk Knee or sheep tick fever. Since 1976 the disease is most often referred to as Lyme disease, Lyme borreliosis or simply borreliosis.
In 1980, Steere, et al., began to test antibiotic regimens in adult patients with Lyme disease. In the same year, New York State Health Dept. epidemiologist Jorge Benach provided Willy Burgdorfer, a researcher at the Rocky Mountain Biological Laboratory, with collections of I. dammini scapularis from Shelter Island, NY, a known Lyme-endemic area as part of an ongoing investigation of Rocky Mountain spotted fever. In examining the ticks for rickettsiae, Burgdorfer noticed “poorly stained, rather long, irregularly coiled spirochetes.” Further examination revealed spirochetes in 60% of the ticks. Burgdorfer credited his familiarity with the European literature for his realization that the spirochetes might be the “long-sought cause of ECM and Lyme disease.” Benach supplied him with more ticks from Shelter Island and sera from patients diagnosed with Lyme disease. University of Texas Health Science Center researcher Alan Barbour “offered his expertise to culture and immunochemically characterize the organism.” Burgdorfer subsequently confirmed his discovery by isolating from patients with Lyme disease spirochetes identical to those found in ticks. In June 1982 he published his findings in Science, and the spirochete was named Borrelia burgdorferi in his honor.
After the identification of B. burgdorferi as the causative agent of Lyme disease, antibiotics were selected for testing, guided by in vitro antibiotic sensitivities, including tetracycline antibiotics, amoxicillin, cefuroxime axetil, intravenous and intramuscular penicillin and intravenous ceftriaxone. The mechanism of tick transmission was also the subject of much discussion. B. burgdorferi spirochetes were identified in tick saliva in 1987, confirming the hypothesis that transmission occurred via tick salivary glands.
Jonathan Edlow, Professor of Medicine at Harvard Medical School, quotes the late Ed Masters (discoverer of STARI, a Lyme-like illness) in his book Bull's-Eye, on the history of Lyme disease. Edlow writes:
Masters points out that the "track record" of the "conventional wisdom" regarding Lyme disease is not very good: "First off, they said it was a new disease, which it wasn't. Then it was thought to be viral, but it isn't. Then it was thought that sero-negativity didn't exist, which it does. They thought it was easily treated by short courses of antibiotics, which sometimes it isn't. Then it was only the Ixodes dammini tick, which we now know is not even a separate valid tick species. If you look throughout the history, almost every time a major dogmatic statement has been made about what we 'know' about this disease, it was subsequently proven wrong or underwent major modifications.

Society and culture
Urbanization and other anthropogenic factors can be implicated in the spread of Lyme disease to humans. In many areas, expansion of suburban neighborhoods has led to gradual deforestation of surrounding wooded areas and increased border contact between humans and tick-dense areas. Human expansion has also resulted in reduction of predators that hunt deer as well as mice, chipmunks and other small rodents – the primary reservoirs for Lyme disease. As a consequence of increased human contact with host and vector, the likelihood of transmission of the disease has greatly increased. Researchers are investigating possible links between global warming and the spread of vector-borne diseases, including Lyme disease.
The deer tick (Ixodes scapularis, the primary vector in the northeastern U.S.) has a two-year life cycle, first progressing from larva to nymph, and then from nymph to adult. The tick feeds only once at each stage. In the fall, large acorn forests attract deer, as well as mice, chipmunks and other small rodents infected with B. burgdorferi. During the following spring, the ticks lay their eggs. The rodent population then "booms". Tick eggs hatch into larvae, which feed on the rodents; thus the larvae acquire infection from the rodents. At this stage, tick infestation may be controlled using acaricides (miticides).
Adult ticks may also transmit disease to humans. After feeding, female adult ticks lay their eggs on the ground, and the cycle is complete. On the West Coast of the United States, Lyme disease is spread by the western black-legged tick (Ixodes pacificus), which has a different life cycle.
The risk of acquiring Lyme disease does not depend on the existence of a local deer population, as is commonly assumed. New research suggests eliminating deer from smaller areas (less than 2.5 ha or 6 acres) may in fact lead to an increase in tick density and the rise of "tick-borne disease hotspots".

Harassment of researchers
In 2001, the New York Times Magazine reported that Allen Steere, chief of immunology and rheumatology at Tufts Medical Center and a codiscoverer and leading expert on Lyme disease, had been harassed, stalked, and threatened by patients and patient advocacy groups angry at his refusal to substantiate their diagnoses of chronic Lyme disease and endorse long-term antibiotic therapy. Because this intimidation included death threats, Steere was assigned security guards. Paul G. Auwaerter, director of infectious disease at Johns Hopkins School of Medicine, cited the political controversy and high emotions as contributing to a "poisonous atmosphere" around Lyme disease, which he believes has led to doctors trying to avoid having Lyme patients in their practice.

Media
A 2004 study in The Pediatric Infectious Disease Journal stated 9 of 19 Internet websites surveyed contained what were described as major inaccuracies. Websites described as providing inaccurate information included several with the word "lyme" in their domain name (e.g. lymenet.org), as well as the website of the International Lyme And Associated Diseases Society. A 2008 article in the New England Journal of Medicine argued media coverage of chronic Lyme disease ignored scientific evidence in favor of anecdotes and testimonials:
The media frequently disregard complex scientific data in favor of testimonials about patients suffering from purported chronic Lyme disease and may even question the competence of clinicians who are reluctant to diagnose chronic Lyme disease. All these factors have contributed to a great deal of public confusion with little appreciation of the serious harm caused to many patients who have received a misdiagnosis and have been inappropriately treated.
The 2008 Oscar finalist documentary film Under Our Skin: The Untold Story of Lyme Disease opened June 19, 2009 in New York City. This documentary, made by a director whose sister contracted the disease, argues that chronic Lyme disease exists. Lyme disease was also the focus of a major feature in The Times (London) in February 2010 which detailed the impact the disease had had on British author Alex Wade.

No comments:

Post a Comment