Marissa DuBois in Slow Motion Full Fashion Week 2023, Fashion Channel Vlog,

Friday, May 13, 2011

Cloud seeding system

Most common chemicals used for cloud seeding include silver iodide and dry ice (frozen carbon dioxide). The expansion of liquid propane into a gas has also been used and can produce ice crystals at higher temperatures than silver iodide. The use of hygroscopic materials, such as salt, is increasing in popularity because of some promising research results.
Seeding of clouds requires that they contain supercooled liquid water—that is, liquid water colder than zero degrees Celsius. Introduction of a substance such as silver iodide, which has a crystalline structure similar to that of ice, will induce freezing nucleation. Dry ice or propane expansion cools the air to such an extent that ice crystals can nucleate spontaneously from the vapor phase. Unlike seeding with silver iodide, this spontaneous nucleation does not require any existing droplets or particles because it produces extremely high vapor supersaturations near the seeding substance. However, the existing droplets are needed for the ice crystals to grow into large enough particles to precipitate out.
In mid-latitude clouds, the usual seeding strategy has been predicated upon the fact that the equilibrium vapor pressure is lower over ice than over water. When ice particles form in supercooled clouds, this fact allows the ice particles to grow at the expense of liquid droplets. If there is sufficient growth, the particles become heavy enough to fall as snow (or, if melting occurs, rain) from clouds that otherwise would produce no precipitation. This process is known as "static" seeding.
Seeding of warm-season or tropical cumulonimbus (convective) clouds seeks to exploit the latent heat released by freezing. This strategy of "dynamic" seeding assumes that the additional latent heat adds buoyancy, strengthens updrafts, ensures more low-level convergence, and ultimately causes rapid growth of properly selected clouds.
Cloud seeding chemicals may be dispersed by aircraft (as in the second figure) or by dispersion devices located on the ground (generators, as in first figure, or canisters fired from anti-aircraft guns or rockets). For release by aircraft, silver iodide flares are ignited and dispersed as an aircraft flies through the inflow of a cloud. When released by devices on the ground, the fine particles are carried downwind and upwards by air currents after release.
An electronic mechanism was tested in 2010, when infrared laser pulses were directed to the air above Berlin by researchers from the University of Geneva. The experimenters posited that the pulses would encourage atmospheric sulfur dioxide and nitrogen dioxide to form particles that would then act as seeds.

No comments:

Post a Comment