Nuclear reactor is a device to initiate and control a sustained nuclear chain reaction. The most common use of nuclear reactors is for the generation of electric energy and for the propulsion of ships. Heat from nuclear fission is used to raise steam, which runs through turbines, which in turn powers either ship's propellors or electrical generators. A few reactors manufacture isotopes for medical and industrial use, and some reactors are only operated for research.
Early reactors
The neutron was discovered in 1932. The concept of a nuclear chain reaction brought about by nuclear reactions mediated by neutrons, was first realized shortly thereafter, by Hungarian scientist Leó Szilárd, in 1933. He filed a patent for his idea of a simple nuclear reactor the following year while working at the Admiralty in London. However, Szilárd's idea did not incorporate the idea of nuclear fission as a neutron source, since that process was not yet discovered. Szilárd's ideas for nuclear reactors using neutron-mediated nuclear chain reactions in light elements, proved unworkable.
Inspiration for a new type of reactor using uranium came from the discovery by Lise Meitner, Fritz Strassman and Otto Hahn in 1938 that bombardment of uranium with neutrons (provided by an alpha-on-beryllium fusion reaction, a "neutron howitzer") produced a barium residue, which they reasoned was created by the fissioning of the uranium nuclei. Subsequent studies in early 1939 (one of them by Szilárd and Fermi) revealed that several neutrons were also released during the fissioning, making available the opportunity for the nuclear chain reaction that Szilárd had envisioned six years previously.
On August 2, 1939 Albert Einstein signed a letter to President Franklin D. Roosevelt (written by Szilard) suggesting that the discovery of uranium's fission could lead to the development of "extremely powerful bombs of a new type", giving impetus to the study of reactors and fission. Szilárd and Einstein knew each other well and had worked together years previously, but Einstein had never thought about this possibility for nuclear energy until Szilard reported it to him, at the beginning of his quest to produce the Einstein-Szilard letter to alert the U.S. government.
Shortly after, Hitler's Germany invaded Poland in 1939, starting World War II in Europe. The U.S. was not yet officially at war, but in October, when the Einstein-Szilard letter was delivered to Roosevelt, he commented that the purpose of doing the research was to make sure "the Nazis don't blow us up." The U.S. nuclear project followed, although with some delay as there remained skepticism (some of it from Fermi) and also little action from the small number of officials in the government who were initially charged with moving the project forward.
The following year the U.S. Government received the Frisch–Peierls memorandum from the UK, which stated that the amount of uranium needed for a chain reaction was far lower then had previously been thought. The memorandum was a product of the MAUD Committee, which was working on the UK atomic bomb project, known as Tube Alloys, later to be subsumed within the Manhattan Project.
Eventually, the first artificial nuclear reactor, Chicago Pile-1, was constructed at the University of Chicago, by a team led by Enrico Fermi, in late 1942. By this time, the program had been pressured for a year by U.S. entry into the war. The Chicago Pile achieved criticality on December 2, 1942 at 3:25 PM. The reactor support structure was made of wood, which supported a pile (hence the name) of graphite blocks, embedded in which was natural uranium-oxide 'pseudospheres' or 'briquettes'.
Soon after the Chicago Pile, the U.S. military developed a number of nuclear reactors for the Manhattan Project starting in 1943. The primary purpose for the largest reactors (located at the Hanford Site in Washington state), was the mass production of plutonium for nuclear weapons. Fermi and Szilard applied for a patent on reactors on 19 December 1944. Its issuance was delayed for 10 years because of wartime secrecy.
"World's first nuclear power plant" is the claim made by signs at the site of the EBR-I, which is now a museum near Arco, Idaho. This experimental LMFBR operated by the U.S. Atomic Energy Commission produced 0.8 kW in a test on December 20, 1951 and 100 kW (electrical) the following day, having a design output of 200 kW (electrical).
Besides the military uses of nuclear reactors, there were political reasons to pursue civilian use of atomic energy. U.S. President Dwight Eisenhower made his famous Atoms for Peace speech to the UN General Assembly on December 8, 1953. This diplomacy led to the dissemination of reactor technology to U.S. institutions and worldwide.
The first nuclear power plant built for civil purposes was the AM-1 Obninsk Nuclear Power Plant, launched on June 27, 1954 in the Soviet Union. It produced around 5 MW (electrical).
After World War II, the U.S. military sought other uses for nuclear reactor technology. Research by the Army and the Air Force never came to fruition; however, the U.S. Navy succeeded when they steamed the USS Nautilus (SSN-571) on nuclear power January 17, 1955.
The first commercial nuclear power station, Calder Hall in Sellafield, England was opened in 1956 with an initial capacity of 50 MW (later 200 MW).
The first portable nuclear reactor "Alco PM-2A" used to generate electrical power (2 MW) for Camp Century from 1960.
Components
The control room of NC State's Pulstar Nuclear Reactor.
The key components common to most types of nuclear power plants are:
Nuclear fuel
Nuclear reactor core
Neutron moderator
Neutron poison
Coolant (often the Neutron Moderator and the Coolant are the same, usually both purified water)
Control rods
Reactor vessel
Boiler feedwater pump
Steam generators (not in BWRs)
Steam turbine
Electrical generator
Condenser
Cooling tower (not always required)
Radwaste System (a section of the plant handling radioactive waste)
Refueling Floor
Spent fuel pool
Nuclear safety systems
Reactor Protective System (RPS)
Emergency Diesel Generators
Emergency Core Cooling Systems (ECCS)
Standby Liquid Control System (emergency boron injection, in BWRs only)
Essential service water system (ESWS)
Containment building
Control room
Emergency Operations Facility
Nuclear training facility (usually contains a Control Room simulator)
Just as conventional power stations generate electricity by harnessing the thermal energy released from burning fossil fuels, nuclear reactors convert the thermal energy released from nuclear fission.
Fission
When a large fissile atomic nucleus such as uranium-235 or plutonium-239 absorbs a neutron, it may undergo nuclear fission. The heavy nucleus splits into two or more lighter nuclei, releasing kinetic energy, gamma radiation and free neutrons; collectively known as fission products. A portion of these neutrons may later be absorbed by other fissile atoms and trigger further fission events, which release more neutrons, and so on. This is known as a nuclear chain reaction.
The reaction can be controlled by using neutron poisons, which absorb excess neutrons, and neutron moderators, which reduce the velocity of fast neutrons, thereby turning them into thermal neutrons, which are more likely to be absorbed by other nuclei. Increasing or decreasing the rate of fission has a corresponding effect on the energy output of the reactor.
Commonly used moderators include regular (light) water (75% of the world's reactors), solid graphite (20% of reactors) and heavy water (5% of reactors). Beryllium has also been used in some experimental types, and hydrocarbons have been suggested as another possibility.
Heat generation
The reactor core generates heat in a number of ways:
The kinetic energy of fission products is converted to thermal energy when these nuclei collide with nearby atoms.
Some of the gamma rays produced during fission are absorbed by the reactor, their energy being converted to heat.
Heat produced by the radioactive decay of fission products and materials that have been activated by neutron absorption. This decay heat source will remain for some time even after the reactor is shut down.
A kilogram of uranium-235 (U-235) converted via nuclear processes releases approximately three million times more energy than a kilogram of coal burned conventionally (7.2 × 1013 joules per kilogram of uranium-235 versus 2.4 × 107 joules per kilogram of coal).
Cooling
A nuclear reactor coolant — usually water but sometimes a gas or a liquid metal or molten salt — is circulated past the reactor core to absorb the heat that it generates. The heat is carried away from the reactor and is then used to generate steam. Most reactor systems employ a cooling system that is physically separated from the water that will be boiled to produce pressurized steam for the turbines, like the pressurized water reactor. But in some reactors the water for the steam turbines is boiled directly by the reactor core, for example the boiling water reactor.
Reactivity control
Nuclear reactor control, Passive nuclear safety, Delayed neutron, Iodine pit, SCRAM, and Decay heat
The power output of the reactor is adjusted by controlling how many neutrons are able to create more fissions.
Control rods that are made of a neutron poison are used to absorb neutrons. Absorbing more neutrons in a control rod means that there are fewer neutrons available to cause fission, so pushing the control rod deeper into the reactor will reduce its power output, and extracting the control rod will increase it.
At the first level of control in all nuclear reactors, a process of delayed neutron emission by a number of neutron-rich fission isotopes is an important physical process. These delayed neutrons account for about 0.65% of the total neutrons produced in fission, with the remainder (termed "prompt neutrons") released immediately upon fission. The fission products which produce delayed neutrons have half lives for their decay by neutron emission that range from milliseconds to as long as several minutes. Keeping the reactor in the zone of chain-reactivity where delayed neutrons are necessary to achieve a critical mass state, allows time for mechanical devices or human operators to have time to control a chain reaction in "real time"; otherwise the time between achievement of criticality and nuclear meltdown as a result of an exponential power surge from the normal nuclear chain reaction, would be too short to allow for intervention.
In some reactors, the coolant also acts as a neutron moderator. A moderator increases the power of the reactor by causing the fast neutrons that are released from fission to lose energy and become thermal neutrons. Thermal neutrons are more likely than fast neutrons to cause fission, so more neutron moderation means more power output from the reactors. If the coolant is a moderator, then temperature changes can affect the density of the coolant/moderator and therefore change power output. A higher temperature coolant would be less dense, and therefore a less effective moderator.
In other reactors the coolant acts as a poison by absorbing neutrons in the same way that the control rods do. In these reactors power output can be increased by heating the coolant, which makes it a less dense poison. Nuclear reactors generally have automatic and manual systems to Scram the reactor in an emergency shut down. These systems insert large amounts of poison (often boron in the form of boric acid) into the reactor to shut the fission reaction down if unsafe conditions are detected or anticipated.
Most types of reactors are sensitive to a process variously known as xenon poisoning, or the iodine pit. Xenon-135 is normally produced in the fission process, and acts as a neutron absorbing "neutron poison", which acts to shut the reactor down, but can be controlled in turn within the reactor by keeping neutron and power levels high enough to destroy it as fast as it is produced. The normal fission process also produces iodine-135, which in turn decays with a half life of under seven hours, to new xenon-135. Thus, if the reactor is shut down, iodine-135 in the reactor continues to decay to xenon-135, to the point that the new xenon-135 from this source ("xenon poisoning") makes re-starting the reactor more difficult, for a day or two, than when first shut down (this temporary state is the "iodine pit.") If the reactor has sufficient extra capacity, it can still be re-started before the iodine-135 and xenon-135 decay, but as the extra xenon-135 is "burned off" by transmuting it to xenon-136 (not a neutron poison), within a few hours the reactor may become unstable as a result of such a "xenon burnoff (power) transient," and then rapidly become overheated, unless control rods are reinserted in order to replace the neutron absorption of the lost xenon-135. Failure to properly follow such a procedure, was a key step in the Chernobyl disaster.
Electrical power generation
The energy released in the fission process generates heat, some of which can be converted into usable energy. A common method of harnessing this thermal energy is to use it to boil water to produce pressurized steam which will then drive a steam turbine that generates electricity.
Classification by moderator material
Used by thermal reactors:
Graphite moderated reactors
Water moderated reactors
Heavy water reactors
Light water moderated reactors (LWRs). Light water reactors use ordinary water to moderate and cool the reactors. When at operating temperature, if the temperature of the water increases, its density drops, and fewer neutrons passing through it are slowed enough to trigger further reactions. That negative feedback stabilizes the reaction rate. Graphite and heavy water reactors tend to be more thoroughly thermalised than light water reactors. Due to the extra thermalization, these types can use natural uranium/unenriched fuel.
Light element moderated reactors. These reactors are moderated by lithium or beryllium.
Molten salt reactors (MSRs) are moderated by a light elements such as lithium or beryllium, which are constituents of the coolant/fuel matrix salts LiF and BeF2.
Liquid metal cooled reactors, such as one whose coolant is a mixture of Lead and Bismuth, may use BeO as a moderator.
Organically moderated reactors (OMR) use biphenyl and terphenyl as moderator and coolant.
Classification by coolant
In thermal nuclear reactors (LWRs in specific), the coolant acts as a moderator that must slow down the neutrons before they can be efficiently absorbed by the fuel.
Water cooled reactor. There are 104 operating reactors in the United States. Of these, 69 are pressurized water reactors (PWR), and 35 are boiling water reactors (BWR).
Pressurized water reactor (PWR)
A primary characteristic of PWRs is a pressurizer, a specialized pressure vessel. Most commercial PWRs and naval reactors use pressurizers. During normal operation, a pressurizer is partially filled with water, and a steam bubble is maintained above it by heating the water with submerged heaters. During normal operation, the pressurizer is connected to the primary reactor pressure vessel (RPV) and the pressurizer "bubble" provides an expansion space for changes in water volume in the reactor. This arrangement also provides a means of pressure control for the reactor by increasing or decreasing the steam pressure in the pressurizer using the pressurizer heaters.
Pressurised heavy water reactors are a subset of pressurized water reactors, sharing the use of a pressurized, isolated heat transport loop, but using heavy water as coolant and moderator for the greater neutron economies it offers.
Boiling water reactor (BWR)
BWRs are characterized by boiling water around the fuel rods in the lower portion of a primary reactor pressure vessel. A boiling water reactor uses 235U, enriched as uranium dioxide, as its fuel. The fuel is assembled into rods that are submerged in water and housed in a steel vessel. The nuclear fission causes the water to boil, generating steam. This steam flows through pipes into turbines. The turbines are driven by the steam, and this process generates electricity. During normal operation, pressure is controlled by the amount of steam flowing from the reactor pressure vessel to the turbine.
Pool-type reactor
Liquid metal cooled reactor. Since water is a moderator, it cannot be used as a coolant in a fast reactor. Liquid metal coolants have included sodium, NaK, lead, lead-bismuth eutectic, and in early reactors, mercury.
Sodium-cooled fast reactor
Lead-cooled fast reactor
Gas cooled reactors are cooled by a circulating inert gas, often helium in high-temperature designs, while carbon dioxide has been used in past British and French nuclear power plants. Nitrogen has also been used.[citation needed] Utilization of the heat varies, depending on the reactor. Some reactors run hot enough that the gas can directly power a gas turbine. Older designs usually run the gas through a heat exchanger to make steam for a steam turbine.
Molten Salt Reactors (MSRs) are cooled by circulating a molten salt, typically a eutectic mixture of fluoride salts, such as FLiBe. In a typical MSR, the coolant is also used as a matrix in which the fissile material is dissolved.
Classification by generation
Generation I reactor
Generation II reactor (most current nuclear power plants)
Generation III reactor (evolutionary improvements of existing designs)
Generation IV reactor (technologies still under development)
The "Gen IV"-term was dubbed by the United States Department of Energy (DOE) for developing new plant types in 2000. In 2003, the French Commissariat à l'Énergie Atomique (CEA) was the first to refer to Gen II types in Nucleonics Week; . First mentioning of Gen III was also in 2000 in conjunction with the launch of the Generation IV International Forum (GIF) plans.
Classification by phase of fuel
Solid fueled
Fluid fueled
Aqueous homogeneous reactor
Molten salt reactor
Gas fueled (theoretical)
Classification by use
Electricity
Nuclear power plants
Propulsion, see nuclear propulsion
Nuclear marine propulsion
Various proposed forms of rocket propulsion
Other uses of heat
Desalination
Heat for domestic and industrial heating
Hydrogen production for use in a hydrogen economy
Production reactors for transmutation of elements
Breeder reactors are capable of producing more fissile material than they consume during the fission chain reaction (by converting fertile U-238 to Pu-239, or Th-232 to U-233). Thus, a uranium breeder reactor, once running, can be re-fueled with natural or even depleted uranium, and a thorium breeder reactor can be re-fueled with thorium; however, an initial stock of fissile material is required.
Creating various radioactive isotopes, such as americium for use in smoke detectors, and cobalt-60, molybdenum-99 and others, used for imaging and medical treatment.
Production of materials for nuclear weapons such as weapons-grade plutonium
Providing a source of neutron radiation (for example with the pulsed Godiva device) and positron radiation (e.g. neutron activation analysis and potassium-argon dating
Research reactor: Typically reactors used for research and training, materials testing, or the production of radioisotopes for medicine and industry. These are much smaller than power reactors or those propelling ships, and many are on university campuses. There are about 280 such reactors operating, in 56 countries. Some operate with high-enriched uranium fuel, and international efforts are underway to substitute low-enriched fuel.